91视频

28 March 2019

Efficient near-infrared (NIR) light-emitting diodes of perovskite have been produced in a laboratory at 91视频. The external quantum efficiency is 21.6%, which is a record. The results have been published in Nature Photonics.

Wiedong Xu in the laboratory.
The work is led by LiU scientist Feng Gao, in close collaboration with colleagues in China, Italy, Singapore and Switzerland.

Perovskites are a group of materials defined by their crystal structure, and have been the focus of intense research interest during the past 10 years, initially for solar cells and recently also for light emitting diodes. They have good light-emitting properties and are easy to manufacture. The external quantum efficiency (the ratio of charge carriers emitted as light over all of those fed into the materials) of light-emitting diodes based on perovskites has until now been limited by defects that arise in the material during manufacture. The defects act as traps for the charge carriers and thus cause energy losses.

Passivation molecules

One way of dealing with defects is to add materials known as 鈥減assiviation molecules鈥, which bind to the atoms that cause defects. The researchers had previously discovered a molecule with amino groups at its ends that gave a certain improvement in properties. However, when they selected a molecule that also contained oxygen atoms, the effect increased dramatically.

鈥淲e now understand that it is the hydrogen bonds between passivation molecules and perovskite materials that cause problems. This allowed us to search for a molecule that was perfect for passivation鈥, says Feng Gao, senior lecturer in the Division of Biomolecular and Organic Electronics at Link枚ping University.

The molecule they found has two amino groups at its ends, with oxygen atoms at suitable distances between them. Oxygen atoms reduce the hydrogen bonding ability of amino groups, and hence increase the probability that they interact with defects. The number of traps for charge carriers in the perovskite is significantly reduced, allowing the charge carriers to recombine and emit light efficiently.

Record-high efficiency

鈥淭his particular perovskite material gives highly efficient light-emitting diodes in the near-infrared region. Near-infrared light-emitting diodes are particularly useful for medical and telecommunication applications. We believe that our new findings can also be applied to perovskite light-emitting diodes with other colours鈥, says Feng Gao.
Photo credit Thor Balkhed
The external quantum efficiency is a record-high 21.6%.

鈥淲e have developed the best light-emitting diodes in perovskite material yet. They can also compete with light-emitting diodes based on, for example, organic materials鈥, says Wiedong Xu, postdoc in the Division of Biomolecular and Organic Electronics, LiU.

One source of finance for the research has been Feng Gao鈥檚 ERC Starting Grant. Feng Gao is also Wallenberg Academic Fellow, and Wiedong Xu is a Wenner-Gren Postdoc Fellow.


Weidong Xu, Qi Hu, Sai Bai, Chunxiong Bao, Yanfeng Miao, Zhongcheng Yuan, Tetiana Borzda, Alex J. Barker, Elizaveta Tyukalova, Zhangjun Hu, Maciej Kawecki, Heyong Wang, Zhibo Yan, Xianjie Liu, Xiaobo Shi, Kajsa Uvdal, Mats Fahlman, Wenjing Zhang, Martial Duchamp, Jun-Ming Liu, Annamaria Petrozza, Jianpu Wang, Li-Min Liu, Wei Huang, and Feng Gao. Nature Photonics 2019. doi 10.1038/s41566-019-0390-x

Translated by George Farrants

Contact

More about perovskites

Research

Latest news from LiU

Fewer back problems with BetterBack

Most backs protest at least at once in a lifetime. Movement is often the best help. Therefore, researchers and physiotherapists in healthcare have developed a model of care 鈥淏etterBack (BättreRygg)鈥, which has now attracted international attention.

A man and a woman standing on a rock beside a pond.

How property owners can work to prevent flooding

The risk of heavy rainfall and severe flooding increases with climate change. But property owners  often underestimate their own responsibility. In a new scientific article, researchers from LiU show how the can go about the preventive work.

Portrait (Gustaf Hendeby).

Blurred borders between civilian and military

A tense political situation in the world, a war in Europe and an everyday life with increasing threats to our security 鈥 what do the researchers do? More than you might think and there will be even more. Defence research is more active than ever.