91Ƶ

28 October 2024

Imagine a flexible module capable of converting waste heat into electricity, whether the surface it's attached to is flat or curved. This module can also generate heating or cooling from electricity. Fully functional prototypes are now available at 91Ƶ.

Photographer: Thor Balkhed

After three years of work at the Printed Electronics Arena at Campus Norrköping, researchers from Linköping University and RISE, in collaboration with the Danish company ParsNord, have completed prototypes for flexible thermoelectric modules.

A thermoelectric module (TEM) is an electronic device that can convert heat into electricity or use electricity to create heating or cooling. It harnesses temperature differences: when one side of the module is hot and the other is cold, electricity is generated. Alternatively, when electricity is applied, one side becomes cooler while the other gets warmer.

Thermoelectric modules currently available on the market are used in products such as portable coolers, car seat heaters, and energy-harvesting devices. However, traditional TEMs are rigid, limiting their range of applications.

Photographer: Thor Balkhed

The main outcome of this project is the production of a relatively affordable module that functions even on non-flat surfaces.

The invention open up new applications such as wearable coolers for medical purposes and electric generators that can power sensor nodes in smart buildings and industrial environments.

According to the developers, this breakthrough is expected to have significant scientific and technological impact. The long-term vision is to establish Europe’s first manufacturer of flexible thermoelectric modules, headquartered in Norrköping at the House of Printed and Organic Electronics (HOPE).

Seyedmohammad Mortazavinatanzi, Postdoc at LiU and CEO at ParsNord Thermoelectric Filial has led the project, which is funded by . (Swedish).

Researchers in a lab

Open Positions at the Laboratory of Organic Electronics

Learn more about open PhD, Postdoc, Masters, Scholarship, and other positions at LOE.

A flexible battery pulled in different directions.

A fluid battery that can take any shape

Using electrodes in a fluid form, researchers at LiU have developed a battery that can take any shape. This soft and conformable battery can be integrated into future technology in a completely new way.

Graphics

Dynamic implants for precision medicine - Connecting Device Physics with Biophysic

By integrating device engineering with biophysical insights, this project drives the development of smarter drug delivery systems with refined dose adjustments to push the boundaries of precision in preclinical medical sciences.

Fewer back problems with BetterBack

Most backs protest at least at once in a lifetime. Movement is often the best help. Therefore, researchers and physiotherapists in healthcare have developed a model of care “BetterBack (BättreRygg)”, which has now attracted international attention.

A man and a woman standing on a rock beside a pond.

How property owners can work to prevent flooding

The risk of heavy rainfall and severe flooding increases with climate change. But property owners  often underestimate their own responsibility. In a new scientific article, researchers from LiU show how the can go about the preventive work.

Portrait (Gustaf Hendeby).

Blurred borders between civilian and military

A tense political situation in the world, a war in Europe and an everyday life with increasing threats to our security – what do the researchers do? More than you might think and there will be even more. Defence research is more active than ever.