91ÊÓÆµ

Nonlinear Potential Theory

Group picture of Nageswari Shanmugalingam, Anders Björn, Jana Björn and Tomas Sjödin.
Nageswari Shanmugalingam, Anders Björn, Jana Björn and Tomas Sjödin. Photographer: Karin Johansson

Our research group is mainly interested in analysis on metric spaces, and in particular nonlinear potential theory associated with p-harmonic functions and quasiminimizers in Euclidean and metric spaces. We are also interested in first-order Sobolev spaces, in particular the so-called Newtonian spaces on metric spaces

A popular scientific description of our research

Differential Equations and Analysis on Metric Spaces

Conferences

We have organized the following conferences in Linköping:

, 22-24 May 2017
, 14-18 June 2015
, 10-14 August 2009

Members of the group

Former members of the group

(Orcid )
Daniel Carlsson
Andreas Christensen (Orcid )


(Orcid )

(Orcid )
(Orcid )

Collaboration

People with whom we collaborate or have close contacts with include the following people.

Sylvester Eriksson-Bique, Juha Lehrbäck and Mikko Parviainen at Jyväskylä University
Stephen Gardiner at University College Dublin
Ugo Gianazza at University of Pavia
Agnieszka Kałamajska at Warsaw University
Minhyun Kim at Hanyang University, Seoul
Juha Kinnunen, Riikka Korte and Sari Rogovin at Aalto University, Helsinki
Visa Latvala at University of Eastern Finland, Joensuu
Xining Li at Sun Yat-sen University, Guangzhou (Canton)
Qing Liu and Xiaodan Zhou at Okinawa Institute of Scicence and Technology
Olli Martio and Xiao Zhong at Helsinki University

Publications

The list below contains the mathematical publications (in reverse chronological order) of the members of the group.

Books

A. Björn and J. Björn, Nonlinear Potential Theory on Metric Spaces, EMS Tracts in Mathematics 17, European Mathematical Society, Zürich, 2011, 415 pp., ISBN 978-3-03719-099-9. Distributed by and . (last updated 3 May 2018).
The authors' profit from the book above is donated to (The Swedish Child Diabetes Fund).
A. Asratian, A. Björn and B. O. Turesson, Diskret Matematik, , Stockholm, 2020, 344 pp. (Swedish).

Ph.D. theses

A. Mwasa, , Ph.D. Dissertation, Linköping Studies in Science and Technology. Dissertations No. 2128, Linköping, 2021, 115 pp. (supervisors Anders Björn, Jana Björn, Tomas Sjödin).
It consists of the following three papers:
Mixed boundary value problem for p-harmonic functions in an infinite cylinder (with J. Björn), Nonlinear Anal. 202 (2021), 112134. 30 pp. doi:10.1016/j.na.2020.112134 (Open choice),
Resolutivity and invariance for the Perron method for degenerate equations of divergence type (with A. Björn and J. Björn),
Behaviour at infinity for solutions of a mixed nonlinear elliptic boundary value problem via inversion (with J. Björn), (This version is slightly different from the version printed in the dissertation.)
L. Malý, , Ph.D. Dissertation, Linköping Studies in Science and Technology. Dissertations No. 1591, Linköping, 2014, 168 pp. (supervisors Anders Björn, Jana Björn, Tomas Sjödin).
It consists of the following four papers (the links here are to slightly different arXiv versions):
(this paper will appear in Math. Scand.),
(this paper has appeared in ),
,

Z. Farnana, , Ph.D. Dissertation, Linköping Studies in Science and Technology. Dissertations No. 1283, Linköping, 2009, 94 pp. (supervisors Jana Björn, Anders Björn, Lars-Erik Andersson).
T. Sjödin, Topics in Potential Theory: Quadrature Domains, Balayage and Harmonic Measure, Doctoral Thesis in Mathematics, TRITA-MAT-05-MA-05, Royal Institute of Technology, Stockholm, 2005, 232 pp. (supervisor Björn Gustafsson).
J. Björn, Interior Regularity and Boundary Behaviour of Solutions to Second Order Elliptic Equations, Ph.D. Dissertation, Linköping Studies in Science and Technology. Dissertations No. 446, Linköping, 1996, 92 pp. (supervisor Vladimir Maz'ya).
A. Björn, Removable Singularities for Hardy Spaces of Analytic Functions, Ph.D. Dissertation, Linköping Studies in Science and Technology. Dissertations No. 365, Linköping, 1994, 74 pp. (supervisor Lars Inge Hedberg).

Licentiate theses

A. Christensen, , Licentiate thesis, Linköping Studies in Science and Technology. Theses. No. 1961, Linköping, 2023, 60 pp. ArXiv versions of the include paper is available here (supervisors Anders Björn, Jana Björn, Tomas Sjödin).
L. Malý, , Licentiate thesis, Linköping Studies in Science and Technology. Theses. No. 1543, Linköping, 2012, 60 pp. ArXiv versions of the two papers are available here and (supervisors Anders Björn, Jana Björn, Tomas Sjödin).
Z. Farnana, , Licentiate thesis, Linköping Studies in Science and Technology. Theses. No. 1342, Linköping, 2008, 52 pp. (supervisors Jana Björn, Anders Björn, Lars-Erik Andersson).
A. Björn, Removable singularities of Hp-spaces in plane domains, Licentiate thesis, Linköping Studies in Science and Technology. Theses. No. 287, Linköping, 1991, 23 pp. (supervisor Lars Inge Hedberg).

For Master's and Bachelor's theses see the bottom of this page.

Preprints

A. Björn, J. Björn and M. Kim, Perron solutions and boundary regularity for nonlocal nonlinear Dirichlet problems, Preprint, 2024.
A. Björn, J. Björn and L. Malý, Non-quasicontinuous Newtonian functions and outer capacities based on Banach function spaces, Preprint, 2025.
A. Björn, J. Björn, R. Korte, S. Rogovin and T. Takala, Preserving Besov (fractional Sobolev) energies under sphericalization and flattening, Preprint, 2024.
L. Malý, Trace and extension theorems for Sobolev-type functions in metric spaces, Preprint, 2017.

Refereed articles

To appear
A. Björn, J. Björn and V. Latvala, The Perron method associated with finely p-harmonic functions on finely open sets, to appear in Potential Anal. doi:10.1007/s11118-024-10185-x (Open choice)
J. Björn and A. Mwasa, Behaviour at infinity for solutions of a mixed boundary value problem via inversion, to appear in Nonlinear Anal.


2025
J. Björn and A. Mwasa, Behaviour at infinity for solutions of a mixed boundary value problem via inversion, Nonlinear Anal. 258 (2025), Paper No. 113816, 14 pp. (Open choice)


2024
G. Baravdish, G. Eilertsen, R. Jaroudi, B.T. Johansson, L. Malý and J. Unger, A Hybrid Sobolev Gradient Method for Learning NODEs, Oper. Res. Forum 5 (2024), Paper No. 91, 39 pp. doi:10.1007/s43069-024-00377-x (Open choice). This paper is based on two preprints and
A. Björn and J. Björn, Condenser capacities and capacitary potentials for unbounded sets, and global p-harmonic Green functions on metric spaces, Comm. Partial Differential Equations 49 (2024), 938-988. doi:10.1080/03605302.2024.2411521 (Open choice)
A. Björn, J. Björn and A. Christensen, Poincaré inequalities and Ap weights on bow-ties, J. Math. Anal. Appl. 539 (2024), Paper No. 128483, 28 pp. doi:10.1016/j.jmaa.2024.128483 (Open choice)
J. Björn, A Wiener criterion for the fractional Laplacian, Proc. Amer. Math. Soc. 152 (2024), 1053-1065. doi:10.1090/proc/16647
D. Manolis, On the Problem of Integrating Infinite Derivatives, Real Anal. Exchange 49 (2024), 293-298. doi:10.14321/realanalexch.1.1.1685253661

2023
R. Alvarado, P. HajÅ‚asz and L. Malý, A simple proof of reflexivity and separability of N1,p Sobolev spaces, Ann. Fenn. Math. 48 (2023), 255-275. doi:10.54330/afm.127419 (Open access), A. Björn and J. Björn, Sharp Besov capacity estimates for annuli in metric spaces with doubling measures, Math. Z. 305 (2023), Paper No. 41, 26 pp. doi:10.1007/s00209-023-03360-0 (Open choice) A. Björn, J. Björn and P. Lahti, Removable sets for Newtonian Sobolev spaces and a characterization of p-path almost open sets, Rev. Mat. Iberoam. 39 (2023), 1143-1180. doi:10.4171/RMI/1419 (Open access), A. Björn, J. Björn and V. Latvala, The Dirichlet problem for p-minimizers on finely open sets in metric spaces, Potential Anal. 59 (2023), 1117-1140. doi:10.1007/s11118-022-09996-7 (Open choice), A. Björn, J. Björn and V. Latvala, Convergence and local-to-global results for p-superminimizers on quasiopen sets, J. Differential Equations 365 (2023), 812-831. doi:10.1016/j.jde.2023.05.009 (Open choice), A. Björn, J. Björn and J. Lehrbäck, Volume growth, capacity estimates, p-parabolicity and sharp integrability properties of p-harmonic Green functions, J. Anal. Math. 150 (2023), 159-214. doi:10.1007/s11854-023-0273-4 (Open choice),

2022
A. Björn, Removable singularities for bounded A-(super)harmonic and quasi(super)harmonic functions on weighted Rn, Nonlinear Anal. 222 (2022), Paper No. 112906, 16 pp. doi:10.1016/j.na.2020.112907 (Open choice),
A. Björn, J. Björn and A. Mwasa, Resolutivity and invariance for the Perron method for degenerate equations of divergence type, J. Math. Anal. Appl. 509 (2022), Paper No. 125937, 14 pp. doi:10.1016/j.jmaa.2021.125937 (Open choice),
A. Björn, J. Björn and N. Shanmugalingam, Extension and trace results for doubling metric measure spaces and their hyperbolic fillings, J. Math. Pures Appl. 159 (2022), 196-249. doi:10.1016/j.matpur.2021.12.003 (Open choice), ,
A. Björn, J. Björn and N. Shanmugalingam, Classification of metric measure spaces and their ends using p-harmonic functions, Ann. Fenn. Math. 47 (2022), 1025-1052. doi:10.54330/afm.120618 (Open access), ,
A. Björn and D. Hansevi, Semiregular and strongly irregular boundary points for p-harmonic functions on unbounded sets in metric spaces, Collect. Math. 73 (2022), 253–270. doi:10.1007/s13348-021-00317-6 (Open choice),
J. Björn and A. KaÅ‚amajska, Poincaré inequalities and compact embeddings from Sobolev type spaces into weighted Lq spaces on metric spaces, J. Funct. Anal. 282 (2022), Paper No. 109421, 47 pp. doi:10.1016/j.jfa.2022.109421 (Open choice),
S. J. Gardiner and T. Sjödin, On a conjecture of Gustafsson and Lin concerning Laplacian growth, Anal. Math. Phys. 12 (2022), Paper No. 38, 9 pp. doi:10.1007/s13324-022-00647-z (Open choice),
S. J. Gardiner and T. Sjödin, Boundary points of angular type form a set of zero harmonic measure, Ann. Fenn. Math. 47 (2022), 641-644. doi:10.54330/afm.116146 (Open access),

2021
A. Björn, J. Björn and N. Shanmugalingam, The Liouville theorem for p-harmonic functions and quasiminimizers with finite energy, Math. Z. 297 (2021), 827-854. doi:10.1007/s00209-020-02536-2 (Open choice),
A. Björn, J. Björn and N. Shanmugalingam, Bounded geometry and p-harmonic functions under uniformization and hyperbolization, J. Geom. Anal. 31 (2021), 5259-5308. doi:10.1007/s12220-020-00477-0 (Open choice),
J. Björn and A. Mwasa, Mixed boundary value problem for p-harmonic functions in an infinite cylinder, Nonlinear Anal. 202 (2021), Paper No. 112134, 30 pp. doi:10.1016/j.na.2020.112134 (Open choice),

2020
A. Björn and J. Björn, A uniqueness result for functions with zero fine gradient on quasiconnected sets, Ann. Sc. Norm. Super. Pisa Cl. Sci. 21 (2020), 293-301. doi:10.2422/2036-2145.201802_014 ,
A. Björn, J. Björn and J. Lehrbäck, Existence and almost uniqueness for p-harmonic Green functions on bounded domains in metric spaces, J. Differential Equations 269 (2020), 6602-6640. doi:10.1016/j.jde.2020.04.044 (Open choice),
A. Björn, J. Björn and I. Mirumbe, The quasisuperminimizing constant for the minimum of two quasisuperminimizers in Rn, Ann. Acad. Sci. Fenn. Math. 45 (2020), 215-225. doi:10.5186/aasfm.2020.4508 , (Open access),
A. Björn, J. Björn and N. Shanmugalingam, Locally p-admissible measures on R, J. Funct. Anal. 278 (2020), Paper No. 108344, 17 pp. doi:10.1016/j.jfa.2019.108344 (Open access),
S. J. Gardiner, M. Ghergu and T. Sjödin, Isoperimetric inequalities for Bergman analytic content, Indiana Univ. Math. J. 69 (2020), 1231-1249. doi:10.1512/iumj.2020.69.7898 ,
S. J. Gardiner and T. Sjödin, On a conjecture of Král concerning the subharmonic extension of continuously differentiable functions, Math. Bohem. 145 (2020), 71-73. doi:10.21136/MB.2019.0104-18 (Open access)


2019
A. Björn, The Kellogg property and boundary regularity for p-harmonic functions with respect to the Mazurkiewicz boundary and other compactifications, Complex Var. Elliptic Equ. 64 (2019), 40-63. doi:10.1080/17476933.2017.1410799 , . (For a free eprint copy (there are 50 in total), type "https://www.tandfonline.com/" followed by "eprint/ZiXIdChA5GADua7jmqK6/full". Please report to me if this doesn't work.) Correction, ibid. 64 (2019), 1756-1757. doi:10.1080/17476933.2018.1551890 (Open choice, correction only). (The arXiv version contains the correction at the end.)
A. Björn and J. Björn, Poincaré inequalities and Newtonian Sobolev functions on noncomplete metric spaces, J. Differential Equations 266 (2019), 44-69. doi:10.1016/j.jde.2018.07.029 (Open access), Corrigendum, ibid. 285 (2021), 493-495. doi:10.1016/j.jde.2021.03.008 (Open choice). (The arXiv version contains the corrigendum at the end.)
A. Björn, J. Björn and X. Li, Sphericalization and p-harmonic functions on unbounded domains in Ahlfors regular metric spaces, J. Math. Anal. Appl. 474 (2019), 852-875. doi:10.1016/j.jmaa.2019.01.071 (Open access),
A. Björn, J. Björn and M. Parviainen, The tusk condition and Petrovskii criterion for the normalized p-parabolic equation, J. Lond. Math. Soc. 100 (2019), 623-643. doi:10.1112/jlms.12224 ,
A. Björn and D. Hansevi, Boundary regularity for p-harmonic functions and solutions of obstacle problems on unbounded sets in metric spaces, Anal. Geom. Metr. Spaces 7 (2019), 179-196. doi:10.1515/agms-2019-0009 (Open access),
S. J. Gardiner and T. Sjödin, A characterization of annular domains by quadrature identities Bull. Lond. Math. Soc. 51 (2019), 436–442. doi:10.1112/blms.12243
P. Lahti, L. Malý, N. Shanmugalingam and G. Speight, Domains in metric measure spaces with boundary of positive mean curvature, and the Dirichlet problem for functions of least gradient, J. Geom. Anal. 29 (2019), 3176-3220. doi:10.1007/s12220-018-00108-9 , ,

2018
H. Aikawa, A. Björn, J. Björn and N. Shanmugalingam, Dichotomy of global capacity density in metric measure spaces, Adv. Calc. Var. 11 (2018), 387-404. doi:10.1515/acv-2016-0066 , ,
A. Björn and J. Björn, Local and semilocal Poincaré inequalities on metric spaces, J. Math. Pures Appl. 119 (2018), 158-192. doi:10.1016/j.matpur.2018.05.005 (Open access),
A. Björn and J. Björn, Tensor products and sums of p-harmonic functions, quasiminimizers and p-admissible weights, Proc. Amer. Math. Soc. 146 (2018), 5195-5203. doi:10.1090/proc/14170 (Open access),
A. Björn, J. Björn, U. Gianazza and J. Siljander, Boundary regularity for the porous medium equation, Arch. Ration. Mech. Anal. 230 (2018), 493-538. doi:10.1007/s00205-018-1251-3 (Open choice),
A. Björn, J. Björn and V. Latvala, The Cartan, Choquet and Kellogg properties for the fine topology on metric spaces, J. Anal. Math. 135 (2018), 59-83. doi:10.1007/s11854-018-0029-8 (Open choice), (40), 2014.
A. Björn, J. Björn and T. Sjödin, The Dirichlet problem for p-harmonic functions with respect to arbitrary compactifications, Rev. Mat. Iberoam. 34 (2018), 1323-1360. doi:10.4171/RMI/1025 (Open access),
S. J. Gardiner, M. Ghergu and T. Sjödin, Analytic content and the isoperimetric inequality in higher dimensions, J. Funct. Anal. 275 (2018), 2284-2298. doi:10.1016/j.jfa.2018.08.004 (Open access),
D. Hansevi, The Perron method for p-harmonic functions in unbounded sets in Rn and metric spaces, Math. Z. 288 (2018), 55-74. doi:10.1007/s00209-017-1877-0 (Open choice),
P. Lahti, L. Malý and N. Shanmugalingam, An analog of the Neumann problem for the 1-Laplace equation in the metric setting: existence, boundary regularity, and stability, Anal. Geom. Metr. Spaces 6 (2018), 1-31. doi:10.1515/agms-2018-0001 (Open access),
L. Malý, Regularization of Newtonian functions on metric spaces via weak boundedness of maximal operators, J. Anal. Math. 134 (2018), 1-54. doi:10.1007/s11854-018-0001-7 ,
L. Malý and N. Shanmugalingam, Neumann problem for p-Laplace equation in metric spaces10.2969/jmsj/1179759546 using a variational approach: existence, boundedness, and boundary regularity, J. Differential Equations 265 (2018), 2431-2460. doi:10.1016/j.jde.2018.04.038 (Open access), ,
L. Malý, N. Shanmugalingam and M. Snipes, Trace and extension theorems for functions of bounded variation, Ann. Sc. Norm. Super. Pisa Cl. Sci. 18 (2018), 313-341. doi:10.2422/2036-2145.201511_007 (Open access),


2017
A. Björn, J. Björn and U. Gianazza, The Petrovskii criterion and barriers for degenerate and singular p-parabolic equations, Math. Ann. 368 (2017), 885-904. doi:10.1007/s00208-016-1415-0 ,
A. Björn, J. Björn, J. T. Gill and N. Shanmugalingam, Geometric analysis on Cantor sets and trees, J. Reine Angew. Math. 725 (2017), 63-114. doi:10.1515/crelle-2014-0099 ,
A. Björn, J. Björn and R. Korte, Minima of quasisuperminimizers, Nonlinear Anal. 155 (2017), 264-284. doi:10.1016/j.na.2017.02.003 ,
A. Björn, J. Björn and J. Lehrbäck, Sharp capacity estimates for annuli in weighted Rn and in metric spaces, Math. Z. 286 (2017), 1173-1215. doi:10.1007/s00209-016-1797-4 (Open choice), (6), 2013.
A. Björn, J. Björn and J. Lehrbäck, The annular decay property and capacity estimates for thin annuli, Collect. Math. 68 (2017), 229-241. doi:10.1007/s13348-016-0178-y ,
A. Björn, J. Björn and J. Malý, Quasiopen and p-path open sets, and characterizations of quasicontinuity, Potential Anal. 46 (2017), 181-199. doi:10.1007/s11118-016-9580-z (Open choice),

2016
J. Arnlind, A. Björn and J. Björn, An axiomatic approach to gradients with applications to Dirichlet and obstacle problems beyond function spaces, Nonlinear Anal. 134 (2016), 70-104. doi:10.1016/j.na.2015.12.010 ,
A. Björn, J. Björn and V. Latvala, Sobolev spaces, fine gradients and quasicontinuity on quasiopen sets, Ann. Acad. Sci. Fenn. Math. 41 (2016), 551-560. doi:10.5186/aasfm.2016.4130 , (Open access),
A. Björn, J. Björn and N. Shanmugalingam, The Mazurkiewicz distance and sets that are finitely connected at the boundary, J. Geom. Anal. 26 (2016), 873-897. doi:10.1007/s12220-015-9575-9 , (10), 2013.
J. Björn, Sharp exponents and a Wiener type condition for boundary regularity of quasiminimizers, Adv. Math. 301 (2016), 804-819. doi:10.1016/j.aim.2016.06.024 (Open access), .
L. Malý, Newtonian spaces based on quasi-Banach function lattices, Math. Scand. 119 (2016), 133-160. doi:10.7146/math.scand.a-24188 (Open access),
L. Malý, Fine properties of Newtonian functions and the Sobolev capacity on metric measure spaces, Rev. Mat. Iberoam. 32 (2016), 219-255. doi:10.4171/RMI/884 (Open access),
T. Sjödin, A new approach to Sobolev spaces in metric measure spaces, Nonlinear Anal. 142 (2016), 194-237. doi:10.1016/j.na.2016.04.010 ,

2015
T. Adamowicz, The geometry of planar p-harmonic mappings: convexity, level curves and the isoperimetric inequality, Ann. Sc. Norm. Super. Pisa Cl. Sci. 14 (2015), 263-292. doi:10.2422/2036-2145.201201_010 (Open access),
T. Adamowicz, P. Harjulehto and P. Hästö, Maximal operator in variable exponent Lebesgue spaces on unbounded quasimetric measure spaces, Math. Scand. 116 (2015), 5-22. doi:10.7146/math.scand.a-20448 (Open access),
A. Björn, The Dirichlet problem for p-harmonic functions on the topologist's comb, Math. Z. 279 (2015), 389-405. doi:10.1007/s00209-014-1373-8 ,
A. Björn and J. Björn, Obstacle and Dirichlet problems on arbitrary nonopen sets, and fine topology, Rev. Mat. Iberoam. 31 (2015), 161-214. doi:10.4171/RMI/830 (Open access),
A. Björn, J. Björn, U. Gianazza and M. Parviainen, Boundary regularity for degenerate and singular parabolic equations, Calc. Var. Partial Differential Equations 52 (2015), 797-827. doi:10.1007/s00526-014-0734-9 , (20), 2013,
A. Björn, J. Björn and V. Latvala, The weak Cartan property for the p-fine topology on metric spaces, Indiana Univ. Math. J. 64 (2015), 915-941. doi:10.1512/iumj.2015.64.5527 , (18), 2013.
A. Björn, J. Björn and N. Shanmugalingam, The Dirichlet problem for p-harmonic functions with respect to the Mazurkiewicz boundary, and new capacities, J. Differential Equations 259 (2015), 3078-3114. doi:10.1016/j.jde.2015.04.014 (Open access),
D. Hansevi, The obstacle and Dirichlet problems associated with p-harmonic functions in unbounded sets in Rn and metric spaces, Ann. Acad. Sci. Fenn. Math. 40 (2015), 89-108. doi:10.5186/aasfm.2015.4005 , (Open access),

2014
T. Adamowicz, Phragmen-Lindelöf theorems for equations with nonstandard growth, Nonlinear Anal. 97 (2014), 169-184. doi:10.1016/j.na.2013.11.018 ,
T. Adamowicz, A. Björn and J. Björn, Regularity of p(·)-superharmonic functions, the Kellogg property and semiregular boundary points, Ann. Inst. H. Poincaré Anal. Non Linéaire 31 (2014), 1131-1153. doi:10.1016/j.anihpc.2013.07.012 (Open access),
A. Björn and J. Björn, The variational capacity with respect to nonopen sets in metric spaces, Potential Anal. 40 (2014), 57-80. doi:10.1007/s11118-013-9341-1 ,
S.J. Gardiner and T. Sjödin, Stationary boundary points for a Laplacian growth problem in higher dimensions, Arch. Ration. Mech. Anal. 213 (2014), 503-526. doi:10.1007/s00205-014-0750-0

2013
T. Adamowicz, A. Björn, J. Björn and N. Shanmugalingam, Prime ends for domains in metric spaces, Adv. Math. 238 (2013), 459-505. doi:10.1016/j.aim.2013.01.014 (Open access),
L. Malý, Minimal weak upper gradients in Newtonian spaces based on quasi-Banach function lattices, Ann. Acad. Sci. Fenn. Math. 38 (2013), 727-745. doi:10.5186/aasfm.2013.3831 , (Open access),
H. Shahgholian and T. Sjödin, Harmonic balls and the two-phase Schwarz function, Complex Var. Elliptic Equ. 58 (2013), 837-852. doi:10.1080/17476933.2011.622046 ,

2012
L. Malý, Calderón-type theorems for operators with non-standard endpoint behavior on Lorentz spaces, Math. Nachr. 285 (2012), 1450-1465. doi:10.1002/mana.201100095
S.J. Gardiner and T. Sjödin, Two-phase quadrature domains, J. Anal. Math. 116 (2012), 335-354. doi:10.1007/s11854-012-0009-3

2011
A. Björn and H. Riesel Table errata 2 to "Factors of generalized Fermat numbers", Math. Comp. 80 (2011), 1865-1866. doi:10.1090/S0025-5718-10-02371-9 (Open access)
A. Björn and J. Björn, Power-type quasiminimizers, Ann. Acad. Sci. Fenn. Math. 36 (2011), 301-319. doi:10.5186/aasfm.2011.3619 , (Open access)
Z. Farnana, Pointwise regularity for solutions of double obstacle problems on metric spaces, Math. Scand. 109 (2011), 185-200. doi:10.7146/math.scand.a-15184 (Open access)

2010
A. Björn, p-harmonic functions with boundary data having jump discontinuities and Baernstein's problem, J. Differential Equations 249 (2010), 1-36. doi:10.1016/j.jde.2010.03.002 (Open access)
A. Björn, Cluster sets for Sobolev functions and quasiminimizers, J. Anal. Math. 112 (2010), 49-77. doi:10.1007/s11854-010-0025-0
A. Björn, J. Björn and N. Marola, BMO, integrability, Harnack and Caccioppoli inequalities for quasiminimizers, Ann. Inst. H. Poincaré C Anal. Non Linéaire 27 (2010), 1489-1505. doi:10.1016/j.anihpc.2010.09.005 (Open access)
A. Björn, J. Björn and M. Parviainen, Lebesgue points and the fundamental convergence theorem for superharmonic functions on metric spaces, Rev. Mat. Iberoam. 26 (2010), 147-174. doi:10.4171/RMI/598 (Open access)
J. Björn, Orlicz-Poincaré inequalities, maximal functions and AΦ-conditions, Proc. Roy. Soc. Edinburgh Sect. A 140 (2010), 31-48. doi:10.1017/S0308210508000772
M. Eleuteri, Z. Farnana, O. E. Kansanen and R. Korte, Stability of solutions of the double obstacle problem on metric spaces, J. Anal. 18 (2010), 145-160. (Parallel open access)
Z. Farnana, Continuous dependence on obstacles for the double obstacle problem on metric spaces, Nonlinear Anal. 73 (2010), 2819-2830. doi:10.1016/j.na.2010.06.023
Z. Farnana, Convergence results for obstacle problems on metric spaces, J. Math. Anal. Appl. 371 (2010), 436-446. doi:10.1016/j.jmaa.2010.05.044 (Open access)


2009
A. Björn, J. Björn, T. Mäkäläinen and M. Parviainen, Nonlinear balayage on metric spaces, Nonlinear Anal. 71 (2009), 2153-2171. doi:10.1016/j.na.2009.01.051 ,
A. Björn and O. Martio, Pasting lemmas and characterizations of boundary regularity for quasiminimizers, Results Math. 55 (2009), 265-279. doi:10.1007/s00025-009-0437-2
J. Björn, Necessity of a Wiener type condition for boundary regularity of quasiminimizers and nonlinear elliptic equations, Calc. Var. Partial Differential Equations 35 (2009), 481-496. doi:10.1007/s00526-008-0216-z
Z. Farnana, The double obstacle problem on metric spaces, Ann. Acad. Sci. Fenn. Math. 34 (2009), 261-277. (Open access)

2008
A. Björn, A regularity classification of boundary points for p-harmonic functions and quasiminimizers, J. Math. Anal. Appl. 338 (2008), 39-47. doi:10.1016/j.jmaa.2007.04.068 (Open access),
A. Björn, J. Björn and N. Shanmugalingam, Quasicontinuity of Newton-Sobolev functions and density of Lipschitz functions on metric spaces, Houston J. Math. 34 (2008), 1197-1211.
J. Björn, Fine continuity on metric spaces, Manuscripta Math. 125 (2008), 369-381. doi:10.1007/s00229-007-0154-7
S. J. Gardiner and T. Sjödin, Convexity and the exterior inverse problem of potential theory, Proc. Amer. Math. Soc. 136 (2008), 1699-1703. doi:10.1090/S0002-9939-07-09228-3 (Open access)

2007
A. Björn, Weak barriers in nonlinear potential theory, Potential Anal. 27 (2007), 381-387. doi:10.1007/s11118-007-9064-2 ,
A. Björn and J. Björn, Approximations by regular sets and Wiener solutions in metric spaces, Comment. Math. Univ. Carolin. 48 (2007), 343-355. , (Open access)
A. Björn, J. Björn and N. Shanmugalingam Sobolev extensions of Hölder continuous and characteristic functions on metric spaces, Canadian J. Math. 59 (2007), 1135-1153. doi:10.4153/CJM-2007-049-7 (Open access)
J. Björn and N. Shanmugalingam, Poincaré inequalities, uniform domains and extension properties for Newton-Sobolev functions in metric spaces, J. Math. Anal. Appl. 332 (2007), 190-208. doi:10.1016/j.jmaa.2006.09.064 (Open access)
S. J. Gardiner and T. Sjödin, Quadrature domains for harmonic functions, Bull. Lond. Math. Soc. 39 (2007), 586-590. doi:10.1112/blms/bdm047
T. Sjödin, On the structure of partial balayage, Nonlinear Anal. 67 (2007), 94-102. doi:10.1016/j.na.2006.05.001
T. Sjödin, Approximation in the cone of positive harmonic functions, Potential Anal. 27 (2007), 271-280. doi:10.1007/s11118-007-9059-z

2006
A. Björn, Removable singularities for bounded p-harmonic and quasi(super)harmonic functions, Ann. Acad. Sci. Fenn. Math. 31 (2006), 71-95. (Open access)
A. Björn, Removable singularities in weighted Bergman spaces, Czechoslovak Math. J. 56 (2006), 179-227. doi:10.1007/s10587-006-0012-x ,
A. Björn, A weak Kellogg property for quasiminimizers, Comment. Math. Helv. 81 (2006), 809-825. doi:10.4171/CMH/75 (Open access)
A. Björn and J. Björn, Boundary regularity for p-harmonic functions and solutions of the obstacle problem on metric spaces, J. Math. Soc. Japan 58 (2006), 1211-1232. doi:10.2969/jmsj/1179759546 (Open access)
A. Björn, J. Björn and N. Shanmugalingam, A problem of Baernstein on the equality of the p-harmonic measure of a set and its closure, Proc. Amer. Math. Soc. 134 (2006), 509-519. doi:10.1090/S0002-9939-05-08187-6 (Open access),
A. Björn and N. Marola, Moser iteration for (quasi)minimizers on metric spaces, Manuscripta Math. 121 (2006), 339-366. doi:10.1007/s00229-006-0040-8 ,
J. Björn, S. Buckley and S. Keith, Admissible measures in one dimension, Proc. Amer. Math. Soc. 134 (2006), 703-705. doi:10.1090/S0002-9939-05-07925-6 (Open access)
T. Sjödin, Mother bodies of algebraic domains in the complex plane, Complex Var. Elliptic Equ. 51 (2006), 357-369. doi:10.1080/17476930600610049


2005
A. Björn, Characterizations of p-superharmonic functions on metric spaces, Studia Math. 169 (2005), 45-62. doi:10.4064/sm169-1-3 (Open access)
A. Björn and H. Riesel, Table errata on "Factors of generalized Fermat numbers", Math. Comp. 74 (2005), 2099. doi:10.1090/S0025-5718-05-01816-8 (Open access)
J. Björn and J. Onninen, Orlicz capacities and Hausdorff measures on metric spaces, Math. Z. 251 (2005), 131-146. doi:10.1007/s00209-005-0792-y

2003
A. Björn, Removable singularities for analytic functions in BMO and locally Lipschitz spaces, Math. Z. 244 (2003), 805-835. doi:10.1007/s00209-003-0524-0 ,
A. Björn, J. Björn and N. Shanmugalingam, The Dirichlet problem for p-harmonic functions on metric spaces, J. Reine Angew. Math. 556 (2003), 173-203. doi:10.1515/crll.2003.020
A. Björn, J. Björn and N. Shanmugalingam, The Perron method for p-harmonic functions in metric spaces, J. Differential Equations 195 (2003), 398-429. doi:10.1016/S0022-0396(03)00188-8 (Open access),

2002
N. Arcozzi and A. Björn, Dominating sets for analytic and harmonic functions and completeness of weighted Bergman spaces, Math. Proc. Roy. Irish Acad. 102A (2002), 175-192. doi:10.3318/PRIA.2002.102.2.175
A. Björn, Properties of removable singularities for Hardy spaces of analytic functions, J. Lond. Math. Soc. 66 (2002), 651-670. doi:10.1112/S002461070200354X
J. Björn, Boundary continuity for quasiminimizers on metric spaces, Illinois J. Math. 46 (2002), 383-403. doi:10.1215/ijm/1258136199 (Open access)
J. Björn, Mappings with dilatation in Orlicz spaces, Collect. Math. 53 (2002), 303-311. (Open access)

2001
A. Björn, Removable singularities for H p spaces of analytic functions, 0<p<1, Ann. Acad. Sci. Fenn. Math. 26 (2001), 155-174. (Open access)
J. Björn,
Boundedness and differentiability for nonlinear elliptic systems, Trans. Amer. Math. Soc. 353 (2001), 4545-4565. doi:10.1090/S0002-9947-01-02834-3 (Open access)
J. Björn,
Poincar'e inequalities for powers and products of admissible weights, Ann. Acad. Sci. Fenn. Math. 26 (2001), 175-188. (Open access)
J. Björn, P. MacManus and N. Shanmugalingam,
Fat sets and pointwise boundary estimates for p-harmonic functions in metric spaces, J. Anal. Math. 85 (2001), 339-369. doi:10.1007/BF02788087

2000
J. Björn, Lq-differentials for weighted Sobolev spaces, Michigan Math. J. 47 (2000), 151-161. doi:10.1307/mmj/1030374674 (Open access)
J. Björn and V. Maz'ya, Capacitary estimates for solutions of the Dirichlet problem for second order elliptic equations in divergence form, Potential Anal. 12 (2000), 81-113. doi:10.1023/A:1008670611142

1998
A. Björn Removable singularities for Hardy spaces, Complex Variables Theory Appl. 35 (1998), 1-25. doi:10.1080/17476939808815069 ,
A. Björn, Removable singularities on rectifiable curves for Hardy spaces of analytic functions. Math. Scand. 83 (1998), 87-102. doi:10.7146/math.scand.a-13844 (Open access)
A. Björn and Riesel, H., Factors of generalized Fermat numbers, Math. Comp. 67 (1998), 441-446 + 49 pp. of tables on micro-fiche. doi:10.1090/S0025-5718-98-00891-6 (Open access) (Table erratas see 2005 and 2011 above.)

1997
J. Björn, Regularity at infinity for a mixed problem for degenerate elliptic operators in a half-cylinder, Math. Scand. 81 (1997), 101-126. , (Open access)

1994
J. Ježková [Björn], Boundedness and pointwise differentiability of weak solutions to quasi-linear elliptic differential equations and variational inequalities, Comment. Math. Univ. Carolin. 35 (1994), 63-80. , (Open access)

Refereed conference proceedings

2014
S. J. Gardiner and T. Sjödin, Quadrature domains and their two-phase counterparts, in Harmonic and Complex Analysis and its Applications, pp. 261-285, Trends Math., Birkhäuser, Cham, 2014. doi:10.1007/978-3-319-01806-5_5

2009
A. Björn and J. Björn, First-order Sobolev spaces on metric spaces, in Function Spaces, Inequalities and Interpolation (Paseky, 2009), pp. 1-29, Matfyzpress, Prague, 2009.
S. J. Gardiner and T. Sjödin, Partial balayage and the exterior inverse problem of potential theory, in Potential Theory and Stochastics in Albac, Theta Ser. Adv. Math. 11, pp. 111-123, Theta, Bucharest, 2009.
S. J. Gardiner and T. Sjödin, Potential theory in Denjoy domains, in Analysis and Mathematical Physics, pp. 143-166, Trends Math., Birkhäuser, Basel, 2009. doi:10.1007/978-3-7643-9906-1_8

2006
J. Björn, Wiener criterion for Cheeger p-harmonic functions on metric spaces, in Potential Theory in Matsue, Advanced Studies in Pure Mathematics 44, pp. 103-115, Mathematical Society of Japan, Tokyo, 2006. , (Open access)

2005
T. Sjödin, Quadrature identities and deformation of quadrature domains, in Quadrature Domains and their Applications, Operator Theory, Advances and Applications 156, pp. 239-255, Birkhäuser, Basel, 2005. doi:10.1007/3-7643-7316-4_12

2003
A. Björn, p-harmonic measures and the Perron method for p-harmonic functions}, in Future Trends in Geometric Function Theory RNC Workshop Jyväskylä 2003, Rep. Univ. Jyväskylä Dep. Math. Stat. 92, pp. 23-29, Univ. Jyväskylä, Jyväskylä, 2003.
A. Björn, Removable singularities for analytic functions in Hardy spaces, BMO and locally Lipschitz spaces, in Progress in Analysis. Proceedings of the 3rd International ISAAC Congress (Berlin, 2001), vol. 1, pp. 445-450, World Scientific, Singapore, 2003. doi:10.1142/9789812794253_0050
J. Björn, Dirichlet problem for p-harmonic functions in metric spaces, in Future Trends in Geometric Function Theory RNC Workshop Jyväskylä 2003, Rep. Univ. Jyväskylä Dep. Math. Stat. 92, pp. 31-38, Univ. Jyväskylä, Jyväskylä, 2003.

1996
A. Björn, Removable singularities for Hardy spaces in subdomains of C, in Potential Theory - ICPT 94 (J. Král, J. Lukes, I. Netuka and J. and Veselý, eds.), pp. 287-295, de Gruyter, Berlin-New York, 1996. doi:10.1515/9783110818574.287
A. Björn, Some open problems relating removable singularities for Hardy spaces and Hausdorff measures, in Potential Theory - ICPT 94 (J. Král, J. Lukes, I. Netuka and J. and Veselý, eds.), p. 474, de Gruyter, Berlin-New York, 1996. doi:10.1515/9783110818574.473

1993
H. Riesel and A. Björn, Generalized Fermat numbers, in Mathematics of Computation 1943-1993: A Half-Century of Computational Mathematics (W.Gautschi, ed.), Proc. Symp. Appl. Math. 48, pp. 583-587, Amer. Math. Soc., Providence, RI, 1994. doi:10.1090/psapm/048/1314895

Popular science articles

2016
A. Björn, HbA1c according to different standards, 2016. (Open access)
A. Björn, HbA1c enligt olika standarder, 2016 (in Swedish). (Open access)
A. Björn, HbA1c podle různých standardů, 2016 (in Czech). (Open access)

2004
A. Björn, Why is there no Nobel prize in mathematics?, De Morgan Association Newsletter, Issue 11, Dept. of Maths., University College London, London, 2003/04.

Master's theses

David Manolis, , 2023 (supervisor A. Björn, examiner J. Björn).
Andreas Christensen, , 2017 (supervisor A. Björn, examiner J. Björn).
Hanna Svensson [Ström], , 2014 (supervisor J. Björn, examiner A. Björn).
Hannes Uppman, , 2009 (supervisor A. Björn).
Karl Tomas Andersson [Lööw], An iterative solution method for p-harmonic functions on finite graphs with an implementation, 2009 (supervisor A. Björn). , Program
John Karlsson, , 2008 (supervisor J. Björn).
Patrik Leifson, , 2006 (supervisor J. Björn).
David Färm, , 2006 (supervisor J. Björn).
Lisa Hallingström, Primkontroll av tal på formen k · 2q+1 med program i Fortran 77, 2003 (supervisor A. Björn).
Svante Landgraf, Dominating sets for real parts of holomorphic functions, 2003 (supervisor A. Björn).
Joakim Gustafsson, An implementation and optimization of an algorithm for reducing formulae in second-order logic, 1996 (supervisor P. Doherty, examiner A. Björn).
Anders Björn, The number of integers less that x, being products of primes of the form q=2rl+a only, 1988 (supervisor H. Riesel).

Bachelor's theses

Simon Bladh, , 2023 (supervisor J. Björn, examiner A. Björn).
Ludvig Fagrell, , 2023 (supervisor A. Björn, examiner J. Björn).
Måns Alskog, , 2023 (supervisor A. Björn, examiner J. Björn).
Samuel Erickson Andersson and David Wiman, , 2022 (supervisor A. Björn, examiner J. Björn).
Jakob Jonsson, , 2022 (supervisor J. Björn, examiner A. Björn).
David Manolis, , 2020 (supervisor A. Björn, examiner J. Björn).
Maria Miranda Navarro, , 2018 (supervisor J. Björn).
Erik Jönsson, , 2018 (supervisor J. Björn, examiner A. Björn).
Erik Sätterqvist, , 2018 (supervisor J. Björn, examiner A. Björn).
Sofia Svensson, , 2017 (supervisor J. Björn, examiner A. Björn).
Karl Nygren, , 2015 (superviser , examiner A. Björn).
Hannah Schäfer Sjöberg, , 2013 (supervisor A. Björn).
Adam Schill Collberg, , 2012 (supervisor Gao Peng, examiner A. Björn).
Jimmie Enhäll, Ett problem inom talteori, 2005 (supervisor A. Björn).
Tobias Svensson, Common factors in generalized Fermat numbers, 2005 (supervisor A. Björn).