Listan nedanför innehåller gruppmedlemmarnas matematiska publikationerna (i omvänd kronologisk ordning).
Böcker
A. Björn and J. Björn,
Nonlinear Potential Theory on Metric Spaces,
EMS Tracts in Mathematics 17,
European Mathematical Society, Zürich, 2011, 415 pp.,
ISBN 978-3-03719-099-9.
Distributed by
and
.
(last updated
3 May 2018).
The authors' profit from the book above is donated to
(The Swedish Child Diabetes Fund).
A. Asratian, A. Björn and B. O. Turesson,
Diskret Matematik,
, Stockholm, 2020,
344 pp. (Swedish).
Doktorsavhandlingar
A. Mwasa,
,
Ph.D. Dissertation,
Linköping Studies in Science and Technology.
Dissertations No. 2128, Linköping, 2021, 115 pp.
(supervisors Anders Björn, Jana Björn, Tomas Sjödin).
It consists of the following three papers:
Mixed boundary value problem for p-harmonic functions in an infinite cylinder
(with J. Björn),
Nonlinear Anal. 202 (2021), 112134. 30 pp.
doi:10.1016/j.na.2020.112134
(Open choice),
Resolutivity and invariance for the Perron method for degenerate equations of divergence type
(with A. Björn and J. Björn),
Behaviour at infinity for solutions of a mixed nonlinear elliptic boundary value problem via
inversion (with J. Björn),
(This version is slightly different from the version printed in the dissertation.)
L. Malý,
,
Ph.D. Dissertation,
Linköping Studies in Science and Technology.
Dissertations No. 1591, Linköping, 2014, 168 pp.
(supervisors Anders Björn, Jana Björn, Tomas Sjödin).
It consists of the following four papers (the links here are to
slightly different arXiv versions):
(this paper will appear in Math. Scand.),
(this paper has appeared in
),
,
Z. Farnana,
,
Ph.D. Dissertation,
Linköping Studies in Science and Technology.
Dissertations No. 1283, Linköping, 2009, 94 pp.
(supervisors Jana Björn, Anders Björn, Lars-Erik Andersson).
T. Sjödin,
Topics in Potential Theory: Quadrature Domains, Balayage
and Harmonic Measure,
Doctoral Thesis in Mathematics,
TRITA-MAT-05-MA-05,
Royal Institute of Technology, Stockholm, 2005, 232 pp.
(supervisor Björn Gustafsson).
J. Björn,
Interior Regularity and Boundary Behaviour of Solutions to Second
Order Elliptic Equations,
Ph.D. Dissertation,
Linköping Studies in Science and Technology.
Dissertations No. 446, Linköping, 1996, 92 pp.
(supervisor Vladimir Maz'ya).
A. Björn,
Removable Singularities for Hardy Spaces of Analytic Functions,
Ph.D. Dissertation,
Linköping Studies in Science and Technology.
Dissertations No. 365,
Linköping, 1994, 74 pp.
(supervisor Lars Inge Hedberg).
Licentiatavhandlingar
A. Christensen,
,
Licentiate thesis,
Linköping Studies in Science and Technology.
Theses. No. 1961, Linköping, 2023, 60 pp.
ArXiv versions of the include paper is available here
(supervisors Anders Björn, Jana Björn, Tomas Sjödin).
L. Malý,
,
Licentiate thesis,
Linköping Studies in Science and Technology.
Theses. No. 1543, Linköping, 2012, 60 pp.
ArXiv versions of the two papers are available here
and
(supervisors Anders Björn, Jana Björn, Tomas Sjödin).
Z. Farnana,
,
Licentiate thesis,
Linköping Studies in Science and Technology.
Theses. No. 1342, Linköping, 2008, 52 pp.
(supervisors Jana Björn, Anders Björn, Lars-Erik Andersson).
A. Björn,
Removable singularities of Hp-spaces in plane domains,
Licentiate thesis,
Linköping Studies in Science and Technology.
Theses. No. 287, Linköping, 1991, 23 pp.
(supervisor Lars Inge Hedberg).
For Master's and Bachelor's theses see the bottom of this page.
Preprints
A. Björn, J. Björn and M. Kim,
Perron solutions and boundary regularity
for nonlocal nonlinear Dirichlet problems,
Preprint, 2024.
A. Björn, J. Björn and L. Malý,
Non-quasicontinuous Newtonian functions
and outer capacities based on Banach function spaces,
Preprint, 2025.
A. Björn, J. Björn, R. Korte, S. Rogovin and T. Takala,
Preserving Besov (fractional Sobolev) energies under sphericalization and flattening,
Preprint, 2024.
L. Malý,
Trace and extension theorems for Sobolev-type functions in metric
spaces,
Preprint, 2017.
Refereed articles
To appear
A. Björn, J. Björn and V. Latvala,
The Perron method
associated with finely p-harmonic functions on finely open sets,
to appear in
Potential Anal.
doi:10.1007/s11118-024-10185-x
(Open choice)
J. Björn and A. Mwasa,
Behaviour at infinity for solutions of a mixed boundary value problem via inversion,
to appear in Nonlinear Anal.
2025
J. Björn and A. Mwasa,
Behaviour at infinity for solutions of a mixed boundary value problem via inversion,
Nonlinear Anal. 258 (2025), Paper No. 113816, 14 pp.
(Open choice)
2024
G. Baravdish, G. Eilertsen, R. Jaroudi, B.T. Johansson, L. Malý and J. Unger,
A Hybrid Sobolev Gradient Method for Learning NODEs,
Oper. Res. Forum 5 (2024), Paper No. 91, 39 pp.
doi:10.1007/s43069-024-00377-x
(Open choice).
This paper is based on two preprints
and
A. Björn and J. Björn,
Condenser capacities and capacitary potentials
for unbounded sets, and global p-harmonic Green functions on metric spaces,
Comm. Partial Differential Equations 49 (2024), 938-988.
doi:10.1080/03605302.2024.2411521
(Open choice)
A. Björn, J. Björn and A. Christensen,
Poincaré inequalities and Ap weights on bow-ties,
J. Math. Anal. Appl.
539 (2024), Paper No. 128483, 28 pp.
doi:10.1016/j.jmaa.2024.128483
(Open choice)
J. Björn,
A Wiener criterion for the fractional Laplacian,
Proc. Amer. Math. Soc. 152 (2024), 1053-1065.
doi:10.1090/proc/16647
D. Manolis,
On the Problem of Integrating Infinite Derivatives,
Real Anal. Exchange 49 (2024), 293-298.
doi:10.14321/realanalexch.1.1.1685253661
2023
R. Alvarado, P. HajÅ‚asz and L. Malý,
A simple proof of reflexivity and separability of N1,p
Sobolev spaces,
Ann. Fenn. Math. 48 (2023), 255-275.
doi:10.54330/afm.127419
(Open access),
A. Björn and J. Björn,
Sharp Besov capacity estimates for annuli in metric spaces
with doubling measures,
Math. Z. 305 (2023), Paper No. 41, 26 pp.
doi:10.1007/s00209-023-03360-0
(Open choice)
A. Björn, J. Björn and P. Lahti,
Removable sets for Newtonian Sobolev spaces and a characterization of
p-path almost open sets,
Rev. Mat. Iberoam. 39 (2023), 1143-1180.
doi:10.4171/RMI/1419
(Open access),
A. Björn, J. Björn and V. Latvala,
The Dirichlet problem for p-minimizers on finely open sets in metric spaces,
Potential Anal. 59 (2023), 1117-1140.
doi:10.1007/s11118-022-09996-7
(Open choice),
A. Björn, J. Björn and V. Latvala,
Convergence and local-to-global results
for p-superminimizers on quasiopen sets,
J. Differential Equations 365 (2023), 812-831.
doi:10.1016/j.jde.2023.05.009
(Open choice),
A. Björn, J. Björn and J. Lehrbäck,
Volume growth, capacity estimates, p-parabolicity and
sharp integrability properties of
p-harmonic Green functions,
J. Anal. Math. 150 (2023), 159-214.
doi:10.1007/s11854-023-0273-4
(Open choice),
2022
A. Björn,
Removable singularities for bounded
A-(super)harmonic
and quasi(super)harmonic functions
on weighted R
n,
Nonlinear Anal. 222 (2022), Paper No. 112906, 16 pp.
doi:10.1016/j.na.2020.112907
(Open choice),
A. Björn, J. Björn and A. Mwasa,
Resolutivity and invariance for the Perron method for degenerate equations of divergence type,
J. Math. Anal. Appl. 509 (2022), Paper No. 125937, 14 pp.
doi:10.1016/j.jmaa.2021.125937
(Open choice),
A. Björn, J. Björn and N. Shanmugalingam,
Extension and trace results for doubling metric measure spaces and their
hyperbolic fillings,
J. Math. Pures Appl. 159 (2022), 196-249.
doi:10.1016/j.matpur.2021.12.003
(Open choice),
,
A. Björn, J. Björn and N. Shanmugalingam,
Classification of metric measure spaces and their ends using
p-harmonic functions,
Ann. Fenn. Math. 47 (2022), 1025-1052.
doi:10.54330/afm.120618
(Open access),
,
A. Björn and D. Hansevi,
Semiregular and strongly irregular boundary points for
p-harmonic functions
on unbounded sets in metric spaces,
Collect. Math. 73 (2022), 253–270.
doi:10.1007/s13348-021-00317-6
(Open choice),
J. Björn and A. KaÅ‚amajska,
Poincaré inequalities and compact embeddings from Sobolev type spaces into
weighted
Lq spaces on metric spaces,
J. Funct. Anal. 282 (2022), Paper No. 109421, 47 pp.
doi:10.1016/j.jfa.2022.109421
(Open choice),
S. J. Gardiner and T. Sjödin,
On a conjecture of Gustafsson and Lin concerning Laplacian growth,
Anal. Math. Phys. 12 (2022), Paper No. 38, 9 pp.
doi:10.1007/s13324-022-00647-z
(Open choice),
S. J. Gardiner and T. Sjödin,
Boundary points of angular type form a set of zero harmonic measure,
Ann. Fenn. Math. 47 (2022), 641-644.
doi:10.54330/afm.116146
(Open access),
2021
A. Björn, J. Björn and N. Shanmugalingam,
The Liouville theorem for p-harmonic functions
and quasiminimizers with finite energy,
Math. Z. 297 (2021), 827-854.
doi:10.1007/s00209-020-02536-2
(Open choice),
A. Björn, J. Björn and N. Shanmugalingam,
Bounded geometry and p-harmonic functions under uniformization
and hyperbolization,
J. Geom. Anal. 31 (2021), 5259-5308.
doi:10.1007/s12220-020-00477-0
(Open choice),
J. Björn and A. Mwasa,
Mixed boundary value problem for p-harmonic functions in an infinite cylinder,
Nonlinear Anal. 202 (2021), Paper No. 112134, 30 pp.
doi:10.1016/j.na.2020.112134
(Open choice),
2020
A. Björn and
J. Björn,
A uniqueness result for functions with zero fine gradient
on quasiconnected sets,
Ann. Sc. Norm. Super. Pisa Cl. Sci. 21 (2020), 293-301.
doi:10.2422/2036-2145.201802_014
,
A. Björn, J. Björn and
J. Lehrbäck,
Existence and almost uniqueness for
p-harmonic
Green functions on bounded domains in metric spaces,
J. Differential Equations 269 (2020), 6602-6640.
doi:10.1016/j.jde.2020.04.044
(Open choice),
A. Björn, J. Björn and
I. Mirumbe,
The quasisuperminimizing constant for the minimum
of two quasisuperminimizers in
Rn,
Ann. Acad. Sci. Fenn. Math. 45 (2020), 215-225.
doi:10.5186/aasfm.2020.4508
,
(Open access),
A. Björn, J. Björn and
N. Shanmugalingam,
Locally
p-admissible measures on
R,
J. Funct. Anal. 278 (2020), Paper No. 108344, 17 pp.
doi:10.1016/j.jfa.2019.108344
(Open access),
S. J. Gardiner, M. Ghergu and
T. Sjödin,
Isoperimetric inequalities for Bergman analytic content,
Indiana Univ. Math. J. 69 (2020), 1231-1249.
doi:10.1512/iumj.2020.69.7898
,
S. J. Gardiner and
T. Sjödin,
On a conjecture of Král concerning the subharmonic
extension of continuously differentiable functions,
Math. Bohem. 145 (2020), 71-73.
doi:10.21136/MB.2019.0104-18
(Open access)
2019
A. Björn,
The Kellogg property and boundary regularity for p-harmonic functions
with respect to the Mazurkiewicz boundary and other compactifications,
Complex Var. Elliptic Equ. 64 (2019), 40-63.
doi:10.1080/17476933.2017.1410799
,
.
(For a free eprint copy (there are 50 in total), type
"https://www.tandfonline.com/"
followed by
"eprint/ZiXIdChA5GADua7jmqK6/full". Please report to me if this doesn't work.)
Correction,
ibid. 64 (2019), 1756-1757.
doi:10.1080/17476933.2018.1551890
(Open choice, correction only).
(The arXiv version contains the correction at the end.)
A. Björn and J. Björn,
Poincaré inequalities and Newtonian Sobolev functions
on noncomplete metric spaces,
J. Differential Equations 266 (2019), 44-69.
doi:10.1016/j.jde.2018.07.029
(Open access),
Corrigendum,
ibid. 285 (2021), 493-495.
doi:10.1016/j.jde.2021.03.008
(Open choice).
(The arXiv version contains the corrigendum at the end.)
A. Björn, J. Björn and X. Li,
Sphericalization and p-harmonic functions on
unbounded domains in Ahlfors regular metric spaces,
J. Math. Anal. Appl. 474 (2019), 852-875.
doi:10.1016/j.jmaa.2019.01.071
(Open access),
A. Björn, J. Björn and M. Parviainen,
The tusk condition and Petrovskii criterion for the normalized
p-parabolic equation,
J. Lond. Math. Soc. 100 (2019), 623-643.
doi:10.1112/jlms.12224
,
A. Björn and D. Hansevi,
Boundary regularity for p-harmonic functions
and solutions of obstacle problems
on unbounded sets in metric spaces,
Anal. Geom. Metr. Spaces 7 (2019), 179-196.
doi:10.1515/agms-2019-0009
(Open access),
S. J. Gardiner and T. Sjödin,
A characterization of annular domains by quadrature identities
Bull. Lond. Math. Soc. 51 (2019), 436–442.
doi:10.1112/blms.12243
P. Lahti, L. Malý, N. Shanmugalingam and G. Speight,
Domains in metric measure spaces with boundary of positive mean
curvature,
and the Dirichlet problem for functions of least gradient,
J. Geom. Anal. 29 (2019), 3176-3220.
doi:10.1007/s12220-018-00108-9
,
,
2018
H. Aikawa, A. Björn, J. Björn and N. Shanmugalingam,
Dichotomy of global capacity density in metric measure spaces,
Adv. Calc. Var. 11 (2018), 387-404.
doi:10.1515/acv-2016-0066
,
,
A. Björn and J. Björn,
Local and semilocal Poincaré inequalities
on metric spaces,
J. Math. Pures Appl.
119 (2018), 158-192.
doi:10.1016/j.matpur.2018.05.005
(Open access),
A. Björn and J. Björn,
Tensor products and sums of p-harmonic functions, quasiminimizers
and p-admissible weights,
Proc. Amer. Math. Soc. 146 (2018), 5195-5203.
doi:10.1090/proc/14170
(Open access),
A. Björn, J. Björn, U. Gianazza and J. Siljander,
Boundary regularity for the porous medium equation,
Arch. Ration. Mech. Anal. 230 (2018), 493-538.
doi:10.1007/s00205-018-1251-3
(Open choice),
A. Björn, J. Björn and V. Latvala,
The Cartan, Choquet and Kellogg properties for the
fine topology on metric spaces,
J. Anal. Math. 135 (2018), 59-83.
doi:10.1007/s11854-018-0029-8
(Open choice),
(40), 2014.
A. Björn, J. Björn and T. Sjödin,
The Dirichlet problem for p-harmonic functions with respect to arbitrary
compactifications,
Rev. Mat. Iberoam. 34 (2018), 1323-1360.
doi:10.4171/RMI/1025
(Open access),
S. J. Gardiner, M. Ghergu and T. Sjödin,
Analytic content and the isoperimetric inequality in higher
dimensions,
J. Funct. Anal. 275 (2018), 2284-2298.
doi:10.1016/j.jfa.2018.08.004
(Open access),
D. Hansevi,
The Perron method for p-harmonic functions in unbounded sets in
Rn and metric spaces,
Math. Z. 288 (2018), 55-74.
doi:10.1007/s00209-017-1877-0
(Open choice),
P. Lahti, L. Malý and N. Shanmugalingam,
An analog of the Neumann problem for the 1-Laplace equation
in the metric setting: existence, boundary regularity, and stability,
Anal. Geom. Metr. Spaces 6 (2018), 1-31.
doi:10.1515/agms-2018-0001
(Open access),
L. Malý,
Regularization of Newtonian functions on metric spaces via weak
boundedness of maximal operators,
J. Anal. Math. 134 (2018), 1-54.
doi:10.1007/s11854-018-0001-7
,
L. Malý and N. Shanmugalingam,
Neumann problem for p-Laplace equation in metric spaces10.2969/jmsj/1179759546
using a variational approach: existence, boundedness, and boundary
regularity,
J. Differential Equations 265 (2018), 2431-2460.
doi:10.1016/j.jde.2018.04.038
(Open access),
,
L. Malý, N. Shanmugalingam and M. Snipes,
Trace and extension theorems for functions of bounded variation,
Ann. Sc. Norm. Super. Pisa Cl. Sci.
18 (2018), 313-341.
doi:10.2422/2036-2145.201511_007
(Open access),
2017
A. Björn, J. Björn and U. Gianazza,
The Petrovskii criterion and barriers
for degenerate and singular p-parabolic equations,
Math. Ann. 368 (2017), 885-904.
doi:10.1007/s00208-016-1415-0
,
A. Björn, J. Björn, J. T. Gill and N. Shanmugalingam,
Geometric analysis on Cantor sets and trees,
J. Reine Angew. Math.
725 (2017), 63-114.
doi:10.1515/crelle-2014-0099
,
A. Björn, J. Björn and R. Korte,
Minima of quasisuperminimizers,
Nonlinear Anal.
155 (2017), 264-284.
doi:10.1016/j.na.2017.02.003
,
A. Björn, J. Björn and J. Lehrbäck,
Sharp capacity estimates for annuli in weighted Rn
and in metric spaces,
Math. Z.
286 (2017), 1173-1215.
doi:10.1007/s00209-016-1797-4
(Open choice),
(6), 2013.
A. Björn, J. Björn and J. Lehrbäck,
The annular decay property and capacity estimates for thin annuli,
Collect. Math.
68 (2017), 229-241.
doi:10.1007/s13348-016-0178-y
,
A. Björn, J. Björn and J. Malý,
Quasiopen and p-path open sets, and characterizations of
quasicontinuity,
Potential Anal. 46 (2017), 181-199.
doi:10.1007/s11118-016-9580-z
(Open choice),
2016
J. Arnlind, A. Björn and J. Björn,
An axiomatic approach to gradients with
applications to Dirichlet and obstacle problems
beyond function spaces,
Nonlinear Anal. 134 (2016), 70-104.
doi:10.1016/j.na.2015.12.010
,
A. Björn, J. Björn and V. Latvala,
Sobolev spaces, fine gradients and quasicontinuity on quasiopen sets,
Ann. Acad. Sci. Fenn. Math. 41 (2016), 551-560.
doi:10.5186/aasfm.2016.4130
,
(Open access),
A. Björn, J. Björn and N. Shanmugalingam,
The Mazurkiewicz distance and sets that are finitely connected at the boundary,
J. Geom. Anal. 26 (2016), 873-897.
doi:10.1007/s12220-015-9575-9
,
(10), 2013.
J. Björn,
Sharp exponents and a Wiener type condition for boundary regularity of
quasiminimizers,
Adv. Math. 301 (2016), 804-819.
doi:10.1016/j.aim.2016.06.024
(Open access),
.
L. Malý,
Newtonian spaces based on quasi-Banach function lattices,
Math. Scand. 119 (2016), 133-160.
doi:10.7146/math.scand.a-24188
(Open access),
L. Malý,
Fine properties of Newtonian functions and the Sobolev capacity on
metric measure spaces,
Rev. Mat. Iberoam. 32 (2016), 219-255.
doi:10.4171/RMI/884
(Open access),
T. Sjödin,
A new approach to Sobolev spaces in metric measure spaces,
Nonlinear Anal. 142 (2016), 194-237.
doi:10.1016/j.na.2016.04.010
,
2015
T. Adamowicz,
The geometry of planar p-harmonic mappings:
convexity, level curves and the isoperimetric inequality,
Ann. Sc. Norm. Super. Pisa Cl. Sci. 14 (2015), 263-292.
doi:10.2422/2036-2145.201201_010
(Open access),
T. Adamowicz, P. Harjulehto and P. Hästö,
Maximal operator in variable exponent Lebesgue spaces on
unbounded quasimetric measure spaces,
Math. Scand. 116 (2015), 5-22.
doi:10.7146/math.scand.a-20448
(Open access),
A. Björn,
The Dirichlet problem for p-harmonic functions on the topologist's comb,
Math. Z. 279 (2015), 389-405.
doi:10.1007/s00209-014-1373-8
,
A. Björn and J. Björn,
Obstacle and Dirichlet problems on arbitrary nonopen sets, and fine topology,
Rev. Mat. Iberoam.
31 (2015), 161-214.
doi:10.4171/RMI/830
(Open access),
A. Björn, J. Björn, U. Gianazza and M. Parviainen,
Boundary regularity for degenerate and singular parabolic equations,
Calc. Var. Partial Differential Equations 52
(2015), 797-827.
doi:10.1007/s00526-014-0734-9
,
(20), 2013,
A. Björn, J. Björn and V. Latvala,
The weak Cartan property for the p-fine topology on metric spaces,
Indiana Univ. Math. J. 64 (2015), 915-941.
doi:10.1512/iumj.2015.64.5527
,
(18), 2013.
A. Björn, J. Björn and N. Shanmugalingam,
The Dirichlet problem for p-harmonic functions with respect to
the Mazurkiewicz boundary, and new capacities,
J. Differential Equations 259 (2015), 3078-3114.
doi:10.1016/j.jde.2015.04.014
(Open access),
D. Hansevi,
The obstacle and Dirichlet problems associated with p-harmonic functions in unbounded sets in Rn and metric spaces,
Ann. Acad. Sci. Fenn. Math. 40 (2015), 89-108.
doi:10.5186/aasfm.2015.4005
,
(Open access),
2014
T. Adamowicz,
Phragmen-Lindelöf theorems for equations with nonstandard growth,
Nonlinear Anal. 97 (2014), 169-184.
doi:10.1016/j.na.2013.11.018
,
T. Adamowicz, A. Björn and J. Björn,
Regularity of p(·)-superharmonic functions,
the Kellogg property and semiregular boundary points,
Ann. Inst. H. Poincaré Anal. Non Linéaire
31 (2014), 1131-1153.
doi:10.1016/j.anihpc.2013.07.012
(Open access),
A. Björn and J. Björn,
The variational capacity with respect to nonopen sets in metric spaces,
Potential Anal. 40 (2014), 57-80.
doi:10.1007/s11118-013-9341-1
,
S.J. Gardiner and T. Sjödin,
Stationary boundary points for a Laplacian growth problem in higher
dimensions,
Arch. Ration. Mech. Anal. 213 (2014), 503-526.
doi:10.1007/s00205-014-0750-0
2013
T. Adamowicz, A. Björn, J. Björn and N. Shanmugalingam,
Prime ends for domains in metric spaces,
Adv. Math. 238 (2013), 459-505.
doi:10.1016/j.aim.2013.01.014
(Open access),
L. Malý,
Minimal weak upper gradients in Newtonian spaces based on
quasi-Banach function lattices,
Ann. Acad. Sci. Fenn. Math. 38 (2013), 727-745.
doi:10.5186/aasfm.2013.3831
,
(Open access),
H. Shahgholian and T. Sjödin,
Harmonic balls and the two-phase Schwarz function,
Complex Var. Elliptic Equ. 58 (2013), 837-852.
doi:10.1080/17476933.2011.622046
,
2012
L. Malý,
Calderón-type theorems for operators with non-standard endpoint
behavior on Lorentz spaces,
Math. Nachr. 285 (2012), 1450-1465.
doi:10.1002/mana.201100095
S.J. Gardiner and T. Sjödin,
Two-phase quadrature domains,
J. Anal. Math. 116 (2012), 335-354.
doi:10.1007/s11854-012-0009-3
2011
A. Björn and H. Riesel
Table errata 2 to "Factors of generalized Fermat numbers",
Math. Comp.
80 (2011), 1865-1866.
doi:10.1090/S0025-5718-10-02371-9
(Open access)
A. Björn and J. Björn,
Power-type quasiminimizers,
Ann. Acad. Sci. Fenn. Math.
36 (2011), 301-319.
doi:10.5186/aasfm.2011.3619
,
(Open access)
Z. Farnana,
Pointwise regularity for solutions of double
obstacle problems on metric spaces,
Math. Scand. 109 (2011), 185-200.
doi:10.7146/math.scand.a-15184
(Open access)
2010
A. Björn,
p-harmonic functions with boundary data having jump discontinuities
and Baernstein's problem,
J. Differential Equations
249 (2010), 1-36.
doi:10.1016/j.jde.2010.03.002
(Open access)
A. Björn,
Cluster sets for Sobolev functions and quasiminimizers,
J. Anal. Math. 112 (2010), 49-77.
doi:10.1007/s11854-010-0025-0
A. Björn, J. Björn and N. Marola,
BMO, integrability, Harnack and Caccioppoli
inequalities for quasiminimizers,
Ann. Inst. H. Poincaré C Anal. Non Linéaire
27 (2010), 1489-1505.
doi:10.1016/j.anihpc.2010.09.005
(Open access)
A. Björn, J. Björn and M. Parviainen,
Lebesgue points and the fundamental convergence theorem
for superharmonic functions
on metric spaces,
Rev. Mat. Iberoam.
26 (2010), 147-174.
doi:10.4171/RMI/598
(Open access)
J. Björn,
Orlicz-Poincaré inequalities, maximal functions and
AΦ-conditions,
Proc. Roy. Soc. Edinburgh Sect. A
140 (2010), 31-48.
doi:10.1017/S0308210508000772
M. Eleuteri, Z. Farnana, O. E. Kansanen and R. Korte,
Stability of solutions of the double obstacle problem on metric
spaces,
J. Anal.
18 (2010), 145-160.
(Parallel open access)
Z. Farnana,
Continuous dependence on obstacles for the double obstacle problem
on metric spaces,
Nonlinear Anal. 73 (2010), 2819-2830.
doi:10.1016/j.na.2010.06.023
Z. Farnana,
Convergence results for obstacle problems on metric spaces,
J. Math. Anal. Appl. 371 (2010), 436-446.
doi:10.1016/j.jmaa.2010.05.044
(Open access)
2009
A. Björn, J. Björn, T. Mäkäläinen and M. Parviainen,
Nonlinear balayage on metric spaces,
Nonlinear Anal. 71 (2009), 2153-2171.
doi:10.1016/j.na.2009.01.051
,
A. Björn and O. Martio,
Pasting lemmas and characterizations of boundary
regularity for quasiminimizers,
Results Math. 55 (2009), 265-279.
doi:10.1007/s00025-009-0437-2
J. Björn,
Necessity of a Wiener type condition
for boundary regularity
of quasiminimizers and nonlinear elliptic equations,
Calc. Var. Partial Differential Equations
35 (2009), 481-496.
doi:10.1007/s00526-008-0216-z
Z. Farnana,
The double obstacle problem on metric spaces,
Ann. Acad. Sci. Fenn. Math.
34 (2009), 261-277.
(Open access)
2008
A. Björn,
A regularity classification of boundary points
for p-harmonic functions and quasiminimizers,
J. Math. Anal. Appl. 338 (2008), 39-47.
doi:10.1016/j.jmaa.2007.04.068
(Open access),
A. Björn, J. Björn and N. Shanmugalingam,
Quasicontinuity of Newton-Sobolev functions and density of Lipschitz
functions on metric spaces,
Houston J. Math. 34 (2008), 1197-1211.
J. Björn,
Fine continuity on metric spaces,
Manuscripta Math. 125 (2008), 369-381.
doi:10.1007/s00229-007-0154-7
S. J. Gardiner and T. Sjödin,
Convexity and the exterior
inverse problem of potential theory,
Proc. Amer. Math. Soc. 136
(2008), 1699-1703.
doi:10.1090/S0002-9939-07-09228-3
(Open access)
2007
A. Björn,
Weak barriers in nonlinear potential theory,
Potential Anal. 27 (2007), 381-387.
doi:10.1007/s11118-007-9064-2
,
A. Björn and
J. Björn,
Approximations by regular sets and Wiener solutions in metric spaces,
Comment. Math. Univ. Carolin. 48 (2007), 343-355.
,
(Open access)
A. Björn, J. Björn and
N. Shanmugalingam
Sobolev extensions of Hölder continuous and characteristic
functions on metric spaces,
Canadian J. Math. 59 (2007), 1135-1153.
doi:10.4153/CJM-2007-049-7
(Open access)
J. Björn and
N. Shanmugalingam,
Poincaré inequalities, uniform domains and extension
properties for Newton-Sobolev functions in metric spaces,
J. Math. Anal. Appl. 332 (2007), 190-208.
doi:10.1016/j.jmaa.2006.09.064
(Open access)
S. J. Gardiner and
T. Sjödin,
Quadrature domains for
harmonic functions,
Bull. Lond. Math. Soc. 39 (2007), 586-590.
doi:10.1112/blms/bdm047
T. Sjödin,
On the structure of partial balayage,
Nonlinear Anal. 67 (2007),
94-102.
doi:10.1016/j.na.2006.05.001
T. Sjödin,
Approximation in the cone of positive harmonic
functions,
Potential Anal. 27 (2007), 271-280.
doi:10.1007/s11118-007-9059-z
2006
A. Björn,
Removable singularities for bounded p-harmonic
and quasi(super)harmonic functions,
Ann. Acad. Sci. Fenn. Math. 31 (2006), 71-95.
(Open access)
A. Björn,
Removable singularities in weighted Bergman spaces,
Czechoslovak Math. J. 56 (2006), 179-227.
doi:10.1007/s10587-006-0012-x
,
A. Björn,
A weak Kellogg property for quasiminimizers,
Comment. Math. Helv. 81 (2006), 809-825.
doi:10.4171/CMH/75
(Open access)
A. Björn and J. Björn,
Boundary regularity for p-harmonic functions and
solutions of the obstacle problem on metric spaces,
J. Math. Soc. Japan 58 (2006), 1211-1232.
doi:10.2969/jmsj/1179759546
(Open access)
A. Björn, J. Björn and N. Shanmugalingam,
A problem of
Baernstein on the equality of the p-harmonic
measure of a set and its closure,
Proc. Amer. Math. Soc. 134 (2006), 509-519.
doi:10.1090/S0002-9939-05-08187-6
(Open access),
A. Björn and N. Marola,
Moser iteration for (quasi)minimizers on metric spaces,
Manuscripta Math. 121 (2006), 339-366.
doi:10.1007/s00229-006-0040-8
,
J. Björn, S. Buckley and S. Keith,
Admissible measures in one dimension,
Proc. Amer. Math. Soc. 134 (2006), 703-705.
doi:10.1090/S0002-9939-05-07925-6
(Open access)
T. Sjödin,
Mother bodies of algebraic domains in the
complex plane,
Complex Var. Elliptic Equ. 51
(2006), 357-369.
doi:10.1080/17476930600610049
2005
A. Björn,
Characterizations of p-superharmonic functions on metric spaces,
Studia Math. 169 (2005), 45-62.
doi:10.4064/sm169-1-3
(Open access)
A. Björn and H. Riesel,
Table errata on "Factors of generalized Fermat numbers",
Math. Comp. 74 (2005), 2099.
doi:10.1090/S0025-5718-05-01816-8
(Open access)
J. Björn and J. Onninen,
Orlicz capacities and Hausdorff measures on metric spaces,
Math. Z. 251 (2005), 131-146.
doi:10.1007/s00209-005-0792-y
2003
A. Björn,
Removable singularities for analytic functions in BMO
and locally Lipschitz spaces,
Math. Z. 244 (2003), 805-835.
doi:10.1007/s00209-003-0524-0
,
A. Björn, J. Björn and N. Shanmugalingam,
The Dirichlet problem for p-harmonic functions on metric spaces,
J. Reine Angew. Math. 556 (2003), 173-203.
doi:10.1515/crll.2003.020
A. Björn, J. Björn and N. Shanmugalingam,
The Perron method for p-harmonic functions in metric spaces,
J. Differential Equations 195 (2003), 398-429.
doi:10.1016/S0022-0396(03)00188-8
(Open access),
2002
N. Arcozzi and A. Björn,
Dominating sets for analytic and harmonic functions
and completeness of weighted Bergman spaces,
Math. Proc. Roy. Irish Acad. 102A (2002), 175-192.
doi:10.3318/PRIA.2002.102.2.175
A. Björn,
Properties of removable singularities for Hardy spaces
of analytic functions,
J. Lond. Math. Soc. 66 (2002), 651-670.
doi:10.1112/S002461070200354X
J. Björn,
Boundary continuity for quasiminimizers on metric spaces,
Illinois J. Math. 46 (2002), 383-403.
doi:10.1215/ijm/1258136199
(Open access)
J. Björn,
Mappings with dilatation in Orlicz spaces,
Collect. Math. 53 (2002), 303-311.
(Open access)
2001
A. Björn,
Removable singularities for H p spaces of
analytic functions, 0<p<1,
Ann. Acad. Sci. Fenn. Math. 26 (2001), 155-174.
(Open access)
J. Björn,
Boundedness and differentiability for nonlinear elliptic systems,
Trans. Amer. Math. Soc. 353 (2001), 4545-4565.
doi:10.1090/S0002-9947-01-02834-3
(Open access)
J. Björn,
Poincar'e inequalities for powers and products of admissible
weights,
Ann. Acad. Sci. Fenn. Math. 26 (2001), 175-188.
(Open access)
J. Björn, P. MacManus and N. Shanmugalingam,
Fat sets and pointwise boundary estimates for p-harmonic functions
in metric spaces,
J. Anal. Math. 85 (2001), 339-369.
doi:10.1007/BF02788087
2000
J. Björn,
Lq-differentials for weighted Sobolev spaces,
Michigan Math. J. 47 (2000), 151-161.
doi:10.1307/mmj/1030374674
(Open access)
J. Björn and V. Maz'ya,
Capacitary estimates for solutions of the Dirichlet problem for second
order elliptic equations in divergence form,
Potential Anal. 12 (2000), 81-113.
doi:10.1023/A:1008670611142
1998
A. Björn
Removable singularities for Hardy spaces,
Complex Variables Theory Appl. 35 (1998), 1-25.
doi:10.1080/17476939808815069
,
A. Björn,
Removable singularities on rectifiable curves for
Hardy spaces of analytic functions.
Math. Scand. 83 (1998), 87-102.
doi:10.7146/math.scand.a-13844
(Open access)
A. Björn and Riesel, H.,
Factors of generalized Fermat numbers,
Math. Comp. 67 (1998), 441-446
+ 49 pp. of tables on micro-fiche.
doi:10.1090/S0025-5718-98-00891-6
(Open access)
(Table erratas see 2005 and 2011 above.)
1997
J. Björn,
Regularity at infinity for a mixed problem for degenerate
elliptic operators in a half-cylinder,
Math. Scand. 81 (1997), 101-126.
,
(Open access)
1994
J. Ježková [Björn],
Boundedness and pointwise differentiability of weak solutions to
quasi-linear elliptic differential equations and variational
inequalities,
Comment. Math. Univ. Carolin. 35 (1994), 63-80.
,
(Open access)
Refereed conference proceedings
2014
S. J. Gardiner and T. Sjödin,
Quadrature domains and their two-phase counterparts,
in Harmonic and Complex Analysis and its Applications,
pp. 261-285, Trends Math., Birkhäuser, Cham, 2014.
doi:10.1007/978-3-319-01806-5_5
2009
A. Björn and J. Björn,
First-order Sobolev spaces on metric spaces,
in Function Spaces, Inequalities and Interpolation
(Paseky, 2009), pp. 1-29,
Matfyzpress, Prague, 2009.
S. J. Gardiner and T. Sjödin,
Partial balayage and the exterior inverse
problem of potential theory,
in Potential Theory and Stochastics in Albac,
Theta Ser. Adv. Math. 11, pp. 111-123, Theta, Bucharest, 2009.
S. J. Gardiner and T. Sjödin,
Potential theory in Denjoy domains,
in Analysis and Mathematical Physics, pp. 143-166,
Trends Math., Birkhäuser, Basel, 2009.
doi:10.1007/978-3-7643-9906-1_8
2006
J. Björn,
Wiener criterion for Cheeger p-harmonic functions on metric
spaces,
in Potential Theory in Matsue,
Advanced Studies in Pure Mathematics 44, pp. 103-115,
Mathematical Society of Japan, Tokyo, 2006.
,
(Open access)
2005
T. Sjödin,
Quadrature identities and deformation of
quadrature domains,
in Quadrature Domains and their Applications,
Operator Theory, Advances and Applications 156, pp. 239-255,
Birkhäuser, Basel, 2005.
doi:10.1007/3-7643-7316-4_12
2003
A. Björn,
p-harmonic measures and the Perron method for
p-harmonic functions},
in Future Trends in Geometric Function Theory
RNC Workshop Jyväskylä 2003,
Rep. Univ. Jyväskylä Dep. Math. Stat. 92,
pp. 23-29, Univ. Jyväskylä, Jyväskylä, 2003.
A. Björn,
Removable singularities for analytic functions in Hardy spaces,
BMO and locally Lipschitz spaces,
in Progress in Analysis. Proceedings of the 3rd International
ISAAC Congress (Berlin, 2001),
vol. 1, pp. 445-450, World Scientific, Singapore, 2003.
doi:10.1142/9789812794253_0050
J. Björn,
Dirichlet problem for p-harmonic functions in metric spaces,
in Future Trends in Geometric Function Theory
RNC Workshop Jyväskylä 2003,
Rep. Univ. Jyväskylä Dep. Math. Stat. 92,
pp. 31-38, Univ. Jyväskylä, Jyväskylä, 2003.
1996
A. Björn,
Removable singularities for Hardy spaces in
subdomains of C,
in Potential Theory - ICPT 94
(J. Král, J. Lukes, I. Netuka and J. and Veselý, eds.), pp. 287-295,
de Gruyter, Berlin-New York, 1996.
doi:10.1515/9783110818574.287
A. Björn,
Some open problems relating removable singularities for
Hardy spaces and Hausdorff measures,
in Potential Theory - ICPT 94
(J. Král, J. Lukes, I. Netuka and J. and Veselý, eds.), p. 474,
de Gruyter, Berlin-New York, 1996.
doi:10.1515/9783110818574.473
1993
H. Riesel and A. Björn,
Generalized Fermat numbers, in
Mathematics of Computation 1943-1993: A Half-Century of Computational
Mathematics (W.Gautschi, ed.),
Proc. Symp. Appl. Math. 48,
pp. 583-587, Amer. Math. Soc., Providence, RI, 1994.
doi:10.1090/psapm/048/1314895
Populärvetenskapliga artiklar
2016
A. Björn,
HbA1c according to different standards,
2016.
(Open access)
A. Björn,
HbA1c enligt olika standarder,
2016 (in Swedish).
(Open access)
A. Björn,
HbA1c podle různých standardů,
2016 (in Czech).
(Open access)
2004
A. Björn,
Why is there no Nobel prize in mathematics?,
De Morgan Association Newsletter, Issue 11,
Dept. of Maths., University College London, London, 2003/04.
Masteruppsatser
David Manolis,
,
2023 (supervisor A. Björn, examiner J. Björn).
Andreas Christensen,
,
2017 (supervisor A. Björn, examiner J. Björn).
Hanna Svensson [Ström],
,
2014 (supervisor J. Björn, examiner A. Björn).
Hannes Uppman,
,
2009 (supervisor A. Björn).
Karl Tomas Andersson [Lööw],
An iterative solution method
for p-harmonic functions on finite graphs with an implementation,
2009 (supervisor A. Björn).
,
Program
John Karlsson,
,
2008 (supervisor J. Björn).
Patrik Leifson,
, 2006 (supervisor J. Björn).
David Färm,
, 2006
(supervisor J. Björn).
Lisa Hallingström,
Primkontroll av tal på formen k · 2q+1 med
program i Fortran 77, 2003 (supervisor A. Björn).
Svante Landgraf,
Dominating sets for real parts of holomorphic functions,
2003 (supervisor A. Björn).
Joakim Gustafsson,
An implementation and optimization of an algorithm
for reducing formulae in second-order logic,
1996 (supervisor P. Doherty, examiner A. Björn).
Anders Björn,
The number of integers less that x, being products of primes
of the form q=2rl+a only,
1988 (supervisor H. Riesel).
Kandidatuppsatser
Simon Bladh,
,
2023 (supervisor J. Björn, examiner A. Björn).
Ludvig Fagrell,
,
2023 (supervisor A. Björn, examiner J. Björn).
Måns Alskog,
,
2023 (supervisor A. Björn, examiner J. Björn).
Samuel Erickson Andersson and David Wiman,
,
2022 (supervisor A. Björn, examiner J. Björn).
Jakob Jonsson,
,
2022 (supervisor J. Björn, examiner A. Björn).
David Manolis,
,
2020 (supervisor A. Björn, examiner J. Björn).
Maria Miranda Navarro,
,
2018 (supervisor J. Björn).
Erik Jönsson,
,
2018 (supervisor J. Björn, examiner A. Björn).
Erik Sätterqvist,
,
2018 (supervisor J. Björn, examiner A. Björn).
Sofia Svensson,
,
2017 (supervisor J. Björn, examiner A. Björn).
Karl Nygren,
, 2015 (superviser
,
examiner A. Björn).
Hannah Schäfer Sjöberg,
, 2013 (supervisor A. Björn).
Adam Schill Collberg,
,
2012 (supervisor Gao Peng, examiner A. Björn).
Jimmie Enhäll,
Ett problem inom talteori, 2005 (supervisor A. Björn).
Tobias Svensson,
Common factors in generalized Fermat numbers, 2005 (supervisor A. Björn).