91ÊÓÆ”

Elektroniska växter

Elektroniska vÀxter

Integrering av elektronik i anläggningar för biohybridsystem, anläggningsoptimering och övervakning

Forskningsledare: Eleni Stavrinidou

ePlants-gruppen är ett tvärvetenskapligt team som brinner för växter och teknik! Vår forskning drivs både av samhälleliga behov och vetenskaplig nyfikenhet. Vi utvecklar bioelektroniska teknologier för att möjliggöra nya upptäckter inom växtvetenskap som kan leda till mer hållbar livsmedelsproduktion och till växter som kan frodas i det föränderliga klimatet. Vi utvecklar också biohybridteknologier och levande material baserade på växter för att uppnå nya tekniska koncept som upprätthåller levande egenskaper men också för att öka sofistikeringen av vår kommunikation med den biologiska världen. Vår grupp ingår också i Wallenberg Wood Science Center (WWSC), Wallenberg Initiative on Materials Science for Sustainable Development (WISE) och är knuten till Umeå Plant Science Center. Vi är alltid intresserade av begåvade personer att gå med i gruppen. Kontakta Dr Eleni Stavrinidou för mer information.


Forskningsaktiviteter

Illustration av forskningsaktiviteter pÄ LOE.

Läs vår recensionsartikel om (Illustration av Adam Armada-Moreira).

Växtbioelektronik

Bioelektroniska enheter för växtövervakning och optimering - Verktyg för växtbiologer, jordbruk och skogsbruk

Dechiffrering av den köttĂ€tande vĂ€xten Venus Fly Trap.Dechiffrera spridningen av aktionspotentialen i den köttätande växten Venus Fly Trap med anpassningsbara multielektroduppsättningar. Foto: Thor Balkhed.

Vi utvecklar bioelektroniska enheter för anläggningsgränssnitt. Vi designar sensorer och ställdon, baserade på organiska elektroniska och jontroniska material med målet att övervinna begränsningar hos konventionella metoder och möjliggöra nya upptäckter. Vi utför biologiska studier på eGreenhouse Lab och samarbetar med växtforskare från vårt nätverk. Växtbioelektronik erbjuder unika möjligheter inklusive dynamisk och on-demand-kontroll av växtfysiologi och signalering samt övervakning av växtprocesser i realtid och med hög spatiotemporal upplösning. Växtbioelektronik är kompatibel med vildtypsväxter och genetiskt modifierade växter. Fokus läggs på att förstå och förbättra växternas reaktioner på miljöstress och öka växtavkastningen.

Växbiohybridsystem

Utnyttja anläggningsstrukturer och funktioner för tekniska system

Root supercapacitors are charged by an organic photovoltaic and then power an electrochromic display.Rotsuperkondensatorer laddas av en organisk solcell och driver sedan en elektrokrom display. Foto: Thor Balkhed.

Växter är fantastiska maskiner som drivs av solen som kan självreparera, känna av och anpassa sig till sin miljö samtidigt som de har hierarkiska strukturer och komplex biokemi. Vår forskning syftar till att utnyttja anläggningsprocesser och strukturer för tekniska tillämpningar inom energi och avkänning. Vi upptäckte att växter kan polymerisera konjugerade oligomerer på grund av deras endogena enzymatiska aktivitet. På så sätt kan vi integrera organiska blandade joniska elektroniska ledare direkt i anläggningsstrukturen. Vi utvecklade biohybridväxter med ett elektroniskt rotsystem som kan användas för att lagra energi och driva lågeffekt elektrokemiska enheter. Biohybridväxter banar väg för autonoma system med potentiella tillämpningar inom energi, avkänning och robotik.

Växtbaserade levande material

Material med levande egenskaper och utvecklande elektroniska, mekaniska och strukturella egenskaper

Föreställ dig en fundamentalt annorlunda teknologi som förändras i dimensioner, reagerar på stimuli och utvecklas över tiden och får ny funktionalitet. Denna vision kan bli verklighet genom att slå samman levande komponenter med högpresterande konstgjorda material, skapa intim interaktion och kommunikation mellan de två. Vi kombinerar de unika egenskaperna hos fotosyntetiska celler med funktionella material och via additiv tillverkning utvecklar vi responsiva och utvecklingsbara material. Det övergripande målet är att utveckla fotosyntetiska material som bibehåller grundläggande egenskaper hos de levande komponenterna och lägger grunden för utvecklingen av en generisk hybridteknologi.

Plant Bioelectronics: En glimt av vår forskning

Publikationer

2025

Giuseppina Tommasini, Mariarosaria De Simone, Martina Blasio, Claudia Zenna, Angela Tino, Eleni Stavrinidou, Silvia Santillo, Claudia Tortiglione (2025) Advanced Materials Interfaces (Artikel, forskningsöversikt)
Serena Armiento, Iwona Bernacka Wojcik, Abdul Manan Manan Dar, Fabian Meder, Eleni Stavrinidou, Barbara Mazzolai (2025) Bioinspiration & Biomimetics, Vol. 20, Artikel 016023 (Artikel i tidskrift)

2024

Cyril Routier, Carmen Hermida-Carrera, Eleni Stavrinidou (2024) ACS AGRICULTURAL SCIENCE & TECHNOLOGY (Artikel i tidskrift)
Gwennael Dufil, Julie Pham, Chiara Diacci, Yohann Daguerre, Daniele Mantione, Samia Zrig, Torgny Nasholm, Mary Donahue, Vasileios Oikonomou, Vincent Noel, Benoit Piro, Eleni Stavrinidou (2024) ACS Applied Bio Materials, Vol. 7, s. 8632-8641 (Artikel i tidskrift)
Tomohiro Shiraki, Yoshiaki Niidome, Arghyamalya Roy, Magnus Berggren, Daniel Simon, Eleni Stavrinidou, Gábor Méhes (2024) ACS Applied Bio Materials, Vol. 7, s. 5651-5661 (Artikel i tidskrift)

Nyheter

TvÄ forskare i labbrock med handskar kopplar in sladdar till en bÀgare med vatten och en vÀxt.

Elektronisk ”jord” ökar tillväxten hos grödor

Kornplantor växer i genomsnitt 50 procent mer när rotsystemet kan stimuleras elektriskt genom odlingssubstratet. Det visar forskare vid LiU som har utvecklat en elektriskt ledande ”jord” för hydroponi.

Eleni Stavrinidou

Hon kombinerar växter och teknik för en hållbar framtid

Eleni Stavrinidou är forskningsledare för området elektroniska växter vid Laboratoriet för organisk elektronik vid LiU. Hennes vision är att utveckla teknologier som möjliggör nya upptäckter inom växtbiologi.

Person som hÄller en liten trÀkonstruktion framför ansiktet.

Världens första trätransistor

Världens första transistor gjord av trä är utvecklad av forskare vid Linköpings universitet och KTH. Studien är publicerad i tidskriften PNAS och banar väg för vidare utveckling av träbaserad elektronik och styrning av elektroniska växter.

Forskningsledare

Medarbetare

Bilder från forskningen

LOE